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ACTION OF A PRESSURE PULSE ON A CAVITY
IN A VISCOUS LIQUID

N. A. Grigor'ev, G. S. Doronin, UDC 532.52.01
and V. L. Odinokii

The case of the collapse of a cavity under the action of a constant external pressure p, was analyzed in
[1]. There is a class of problems, however, in which the external action consists of brief pressure pulses.
Such a situation occurs, for example, in the impact loading of porous solids.

Suppose that there is an empty spherical cavity of radius r; in a viscous incompressible liquid with a
density p. The pressure py(t, 7) at infinity (far from the cavity) is an arbitrary function of timeat0 =t =<7
and is reduced to zercatt > 7.

The motion is spherically symmetric and the Navier —Stokes equations'describing it have the form

au v du du 1 8p _
27 =0 Ftugtoa=0 m

where u(r, t) is the velocity; p(r, t) is the pressure.

At the surface of the cavity a normal stress orr is absent (the cavity is empty), and since gpp = —p +
2ndu/dr, we have p, = 2n(du/ar),;. Here and later the values of quantities at the boundary are marked by the

index 1; n is the coefficient of dynamic viscosity.
The second boundary condition will be
P = Px(t, T) at r = oo.

From the first equation of (1) we obtain u(r, t) = u;r}/r?

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 86-88,
March-April, 1978, Original article submitted March 11, 1977.

210 0021-8944/78/1902-0210$07.50 ©1978 Plenum Publishing Corporation



re \ ‘ 67 Re, 12]15
Tmin/p
! 10 min
\Re;ﬂe, 12 5 Q.U;F ; 1 .
| % N
. !

: !
Re, t c=Rey 8 % \ '
8 8,5i i ; .
Re,<Re, o 5{ i L i .

RSN a2/ oo : o
4 6 8 2 16 ' 10 1z 14 16

N

Fig. 1 Fig. 2 Fig. 3

Substituting this expression for u into the second equation of (1) and integrating from r, to « with allow~
ance for the boundary conditions for p, we obtain
du . 3 Uy P f _4_\’_ .
F’fTTTTPulhTr% =0 (2)
Let us consider the motion of the cavity at t > v, when p, = 0. As the initial data for the radius of the
cavity and the velocity of its surface, we take the values of these quantities at the time the action of the exter-
nal pressure ceased. The solution has the form

_ v(l/g(S—Ret)—S)’

3)

U

where Re; =|uzlr; /v is the value of the Reynolds number at t = 7; u, and r. are the radius of the cavity and
the velocity of its surface, respectively, att = 7.

Equation (3) allows one to obtain the law of variation of the Reynolds number att > 7

Re = l/—::—(Ret_S)j'—s, @

from which it follows that when Re; > 8 the Reynolds number grows with a decrease in r, and approaches in-
finity as ri'1/ 2, When Re; < 8 the Reynolds number declines with a decrease in ry and becomes equal to zero at
r{/r; = (L—Re;/8)% The velocity of the cavity boundary is reduced to zero at this value of the radius and

its further motion ceases. When Re; = 8 the Reynolds number remains constant up to the complete collapse

of the cavity.

Thus, the value of Re; = 8 is critical (we designate it as Rey); it marks the boundary of the two different
modes of collapse of the cavity (Fig. 1).

If the external pressure pulse is such that Re; > Rex, then collapse of the cavity occurs, with Uy~ r;3/ 2
at small r;, When Re, = Rex collapse of the cavity also occurs, but uy ~ r’{i/z. When Re; < Rex partial collapse
of the cavity occurs.

An expression for the limiting radius of the cavity at any values of Re; can be obtained from (4):

Ym ReTY . _
- —(1——55: U_ (Re, — Rey),

where rjjm, is the limiting radius of the cavity; U_(x) is 2 unit antisymmetric function.

It follows from (3) that the realization of one or another mode of collapse of the cavity is determined by
the value of Re..

T
To detcrmine the dependence of Re; on the pressure pulse [ = f pdt we write the equation for the Rey-
o
nolds number as a function of time, which follows from Eq. (2):
v o dt 2 Y r’z" (5)

Changing to the dimensionless quantities t = vt/r}, r = r;/ry, and a = J po/plxe/v) and supplementing
Eq. {5) with the equation of motion, we obtain the system



dRe _Reip,_gyrge, 40 R (6)
Jt 22 dt r

with the initial conditions Re (0) = 0 and r(0) = 1. In the case of an arbitrary dependence p.(t, 7) one deter-
mines Re; numerically.

Let us consider the limiting case when the pressure pulse retains finite as 7 — 0.
The solution of the system (6) has the form
Re, = Flov, r = 1.
For complete collapse of the cavity it is necessary that I = Rey,pv.
Partial collapse of the cavity occurs when I < Rexpr, where
riim'To = (1 — I/Re,pv)*.
For rectangular pressure pulses

Polt, T) = poU_(v — 1), py = const

the quantity Re, essentially depends on the parameter o =Vpy/p (ry/v): it either grows without limit with an
increase in 7 or, reaching a maximum at some 7, subsequently approaches zero. The motion of a cavity in a
viscous liquid under the action of a constant pressure was studied in [1] and a critical value of oy = 8.4 was
obtained for the parameter. When o > 8.4 the velocity of the cavity boundary grows without limit as r~%/2 with
a decrease in radius, and therefore the Reynolds number also grows without limit: Re =(u ir;/v ~ rf‘/ 2
From the law (2) of variation in the velocity in the absence of external pressure it follows that when a < 8.4
the maximum value is Rer < Rey and partial collapse of the cavity occurs at any finite values of the pressure
pulse. The dependence of Re, on the pressure pulse I = py7, obtained through numerical integration of the sys-
tem (), is presented in Fig, 2.

For o > 8.4 there is a minimum value of the pressure pulse Iyjn at which the cavity collapses, in which
case Re, = Rey. The dependence of Iy;y on o is presented in Fig. 3. '
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DIMENSIONLESS EQUATIONS OF STATE AND
ATTENUATION OF SHOCK WAVES

B. S. Chekin UDC 536.34

1. Dimensionless Hugoniot Equations of State

Basic information as regards the compressibility of materials and their thermodynamics at high pres-
sures is at present obtained from shock-wave experiments [1]. By using the wave velocity D and the mass
velocity U, the pressures (as well as densities and specific energies) are made constant in them for deter-
mining the path of the Hugoniot adiabat. The remarkable empirical relation found in a number of experiments
consists in that for many materials a linear dependence is observed between the shock-wave velocity and the
downstream velocity of the matter, D = Cy + AU. This relation, together with the conservation laws, yields
straightforward expressions for the shock pressure Py, for the increase of the inner energy EH — E,, and for
the deformation X:

X =1—pylp=UlCo+AU), Pg=pLC0X/(1— rX)2 (L1
Egy — E, = 0.5C5X%/(1 — 1X)?,
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